리튬 배터리 팩 조립 공정 내부: 정밀도, 성능 및 전력

강력하고 컴팩트하며 안정적인 모든 배터리 팩 뒤에는 고도로 제어되고 정밀한 제조 공정이 있습니다. 이 문서에서는 리튬 배터리 팩 조립 방법에 대한 포괄적인 개요를 제공하며, 셀 선택부터 최종 테스트 및 패키징에 이르는 각 단계를 중점적으로 설명합니다.

YouTube #!trpst#trp-gettext data-trpgettextoriginal=4949#!trpen#비디오#!trpst#/trp-gettext#!trpen#

Battery Cell Selection

The battery pack assembly process starts with the selection of lithium cells. The three most common types of lithium-ion cells used are:

Cylindrical Cells (e.g., 18650, 21700)

Prismatic Cells

Pouch Cells

Each cell type offers different benefits in terms of energy density, thermal management, and structural integration. Cell selection is based on the application — for instance, high-power EVs may use 21700 cylindrical cells, while space-constrained devices may prefer prismatic or pouch types.

 

Key Considerations:

Voltage and capacity ratings

Internal resistance

Consistency in performance (matched cells)

Manufacturer reliability and safety certifications

Before assembly, cells undergo quality testing to ensure uniform performance. Disparities in voltage, internal resistance, or capacity can lead to inefficiency and safety risks.

 

Cell Grading and Sorting

Once the cells are selected, they are sorted or graded. This step ensures that only cells with similar electrical characteristics are grouped together in a battery pack, optimizing performance and safety.

Sorting Criteria:

Voltage range

Internal resistance

Capacity (mAh or Ah)

Manufacturing date and batch

Automated equipment often conducts this process, using advanced algorithms and robotic arms to handle high volumes of cells accurately.

 

Battery Pack Design and Configuration

Design is critical to ensure the battery pack meets the application’s requirements for power, voltage, current, size, weight, and thermal management.

Common configurations:

Series Connection (S): Increases the voltage

Parallel Connection (P): Increases the current/capacity

For example, a 13S4P configuration implies 13 cells in series and 4 in parallel. Engineers use simulation software to determine the most efficient and safe design.

Mechanical Structure:

Cell holders and brackets

Insulation layers

Impact-resistant casing

Thermal management channels

 

Cell Spot Welding and Interconnection

Once the layout is confirmed, cells are fixed in position and electrically connected using nickel strips or copper conductors.

Spot Welding Process:

Nickel strips are placed over the cell terminals

A high-current pulse creates localized heat, welding the strip to the cell

The weld must be strong, conductive, and clean

Laser welding is also gaining popularity for its precision and reduced thermal impact.

 

Battery Management System (BMS) Integration

The Battery Management System (BMS) is a critical component that monitors and controls the battery pack’s operation.

Functions of BMS:

Monitoring voltage, temperature, and current

Balancing charge across cells

Providing protection against overcharge, over-discharge, overcurrent, and short circuits

Communicating with external systems (CAN Bus or UART)

Wiring harnesses connect the BMS to each series of cells to ensure accurate monitoring. The BMS board is typically attached to the top or side of the battery pack.

 

Insulation and Thermal Management

Safety is paramount in battery pack design. Proper insulation materials and heat-dissipation systems are essential to prevent thermal runaway and short circuits.

Insulation Techniques:

Kapton or fish paper between cells

Heat shrink tubing around pack

Foam padding for shock absorption

Thermal Solutions:

Air cooling channels

Heat sinks or aluminum plates

Phase-change materials or liquid cooling (for high-performance applications)

Enclosure and Mechanical Assembly

The assembled cells, wiring, and BMS are enclosed in a protective casing to shield the pack from physical damage, moisture, and dust.

Case Types:

Plastic injection-molded enclosures

Aluminum alloy casings

Custom 3D-printed holders (for small-scale production)

The casing is sealed, often with ultrasonic welding or industrial adhesives, and sometimes includes vents or pressure release valves for safety.

 

Testing and Quality Control

Every lithium battery pack undergoes rigorous testing before shipment.

Electrical Tests:

Voltage and capacity verification

Charge/discharge cycle testing

Load and impedance checks

Safety Tests:

단락 보호

Overvoltage and undervoltage response

Temperature rise under load

Visual Inspection:

Spot weld integrity

Connector alignment

Casing defects

Many manufacturers use automated testing stations to ensure consistency and traceability.

 

Labeling and Compliance

To meet international safety and transport regulations, battery packs must be labeled appropriately. This includes:

Rated voltage and capacity

Manufacturer name and contact info

Compliance marks (e.g., CE, UL, UN38.3)

QR codes or barcodes for traceability

UN38.3 testing is especially crucial for batteries intended for air shipment.

 

Packaging and Logistics

The final step is packaging the battery for shipping. Anti-static bags, foam inserts, and sturdy cartons are used to prevent physical or electrostatic damage.

Some shipments require:

Dangerous goods declaration

Special labeling (e.g., “Lithium Battery Inside”)

Custom documentation for customs clearance

Trends and Innovations in Battery Pack Assembly

The battery industry is evolving rapidly, with automation, AI, and sustainability driving the next generation of pack production.

 

The assembly of lithium battery packs is a highly technical and quality-sensitive process. From cell selection and configuration to BMS integration and safety testing, each step plays a vital role in ensuring the final product is safe, durable, and high-performing.

에너지 저장 솔루션에 대한 수요가 증가함에 따라 전기 자동차(EV), 태양 에너지 저장 시스템, 백업 전원 공급 장치에 이르기까지 다양한 애플리케이션에서 LiFePO4(리튬인산철) 배터리 팩이 선호되고 있습니다. 안전성, 긴 수명, 안정성으로 잘 알려진 LiFePO4 배터리는 전문가와 애호가 모두에게 적합한 솔루션입니다. 그렇다면 신뢰할 수 있는 LiFePO4 배터리 팩을 정확히 어떻게 제작할 수 있을까요?
2025-07-16
+
동관이잔전자기술유한공사는 화재 안전 의식과 비상 대응 능력을 강화하기 위한 선제적 조치의 일환으로 7월 15일 종합 화재 안전 훈련을 성공적으로 실시했습니다. 이 훈련은 화재 경보 대응, 인원 대피, 초기 화재 진압, 응급 의료 지원 등 실제 비상 상황을 가정하여 회사의 화재 안전 관리 시스템과 비상 대비 태세를 철저히 평가했습니다.
2025-07-15
+
전기 모빌리티 및 에너지 저장 애플리케이션의 급속한 성장으로 48V 리튬 배터리는 다양한 산업 분야에서 선호되는 전력 솔루션이 되었습니다. 전기 자전거(전기 자전거), 스쿠터, 트라이크부터 휴대용 발전소, 태양광 시스템에 이르기까지 48V 배터리 팩은 높은 효율성, 강력한 호환성, 유연한 구성을 제공하여 개인 및 산업 사용자 모두에게 이상적인 옵션입니다.
2025-07-14
+
전 세계가 지속 가능한 청정 에너지로의 전환을 가속화하고 있는 가운데, 리튬 배터리 기술은 이러한 전환의 중심 역할을 하고 있습니다. 전기 자동차 및 재생 에너지 저장 장치부터 모바일 기기 및 산업용 애플리케이션에 이르기까지 리튬 배터리는 이제 필수 불가결한 존재가 되었습니다. 이 분야에서 혁신의 경계를 넓히고 있는 기업 중에는 다음과 같은 기업이 있습니다. 12년 이상의 전문성과 국제 시장에서 강력한 입지를 구축한 리튬 배터리 제조업체인 심천 퍼스트 파워 에너지 유한회사(심천 이잔 배터리)가 있습니다.
2025-07-11
+